Differential forms and the noncommutative residue

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential Forms on Noncommutative Spaces

This paper is intended as an introduction to noncommutative geometry for readers with some knowledge of abstract algebra and differential geometry. We show how to extend the theory of differential forms to the “noncommutative spaces” studied in noncommutative geometry. We formulate and prove the Hochschild-Kostant-Rosenberg theorem and an extension of this result involving the Connes differential.

متن کامل

Trace Expansions and the Noncommutative Residue for Manifolds with Boundary

For a pseudodifferential boundary operator A of order ν ∈ Z and class 0 (in the Boutet de Monvel calculus) on a compact n-dimensional manifold with boundary, we consider the function Tr(AB−s), where B is an auxiliary system formed of the Dirichlet realization of a second order strongly elliptic differential operator and an elliptic operator on the boundary. We prove that Tr(AB−s) has a meromorp...

متن کامل

S ep 2 00 6 Differential Forms and the Wodzicki Residue for Manifolds with Boundary ∗

In [3], Connes found a conformal invariant using Wodzicki’s 1-density and computed it in the case of 4-dimensional manifold without boundary. In [14], Ugalde generalized the Connes’ result to n-dimensional manifold without boundary. In this paper, we generalize the results of [3] and [14] to the case of manifolds with boundary. Subj. Class.: Noncommutative global analysis; Noncommutative differ...

متن کامل

Adiabatic Limits, Vanishing Theorems and the Noncommutative Residue

In this paper, we compute the adiabatic limit of the scalar curvature and prove several vanishing theorems, we also derive a Kastler-Kalau-Walze type theorem for the noncommutative residue in the case of foliations.

متن کامل

Noncommutative Residue for Heisenberg Manifolds. I.

In this paper we construct a noncommutative residue for the Heisenberg calculus, that is, for the hypoelliptic calculus on Heisenberg man-ifolds, including on CR and contact manifolds. This noncommutative residue as the residual induced on operators of integer orders by the analytic extension of the usual trace to operators of non-integer orders and it agrees with the integral of the density de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2008

ISSN: 0393-0440

DOI: 10.1016/j.geomphys.2008.08.004